<listing id="17fpr"><cite id="17fpr"><ruby id="17fpr"></ruby></cite></listing>
<menuitem id="17fpr"><noframes id="17fpr"><thead id="17fpr"></thead>
<var id="17fpr"><strike id="17fpr"></strike></var>
<menuitem id="17fpr"><dl id="17fpr"></dl></menuitem> <var id="17fpr"></var>
<var id="17fpr"></var><cite id="17fpr"><strike id="17fpr"><listing id="17fpr"></listing></strike></cite>
<var id="17fpr"><strike id="17fpr"></strike></var>
<var id="17fpr"></var>
<var id="17fpr"><strike id="17fpr"></strike></var><var id="17fpr"></var><cite id="17fpr"></cite>
<var id="17fpr"><strike id="17fpr"><listing id="17fpr"></listing></strike></var>
<var id="17fpr"></var>
<var id="17fpr"><strike id="17fpr"></strike></var><cite id="17fpr"></cite>
<menuitem id="17fpr"></menuitem>
<cite id="17fpr"><strike id="17fpr"><thead id="17fpr"></thead></strike></cite>
<cite id="17fpr"><strike id="17fpr"><listing id="17fpr"></listing></strike></cite>
<var id="17fpr"><dl id="17fpr"></dl></var><cite id="17fpr"></cite>
歡迎訪問釣魚網,請記住本站域名 www.dmg-elevators.com
以魚為媒,以釣會友。

首頁 > 技巧

配方法求最值例題20道

kaifamei 2026-01-05 技巧 評論

配方法求最值例題20道


  • 配方法求最值例題20道

以下是20道配方法求最值例題:

1. 求函數 y = x2 + 2x的最值。

解: y = (x + 1)2 - 1 ≥ - 1,即當 x = - 1時,函數取最小值 - 1。

2. 求函數 y = 2x2 - 6x + 5的最值。

解: y = (2x - 3)2 - 4,當 x = 1.5時,函數取最小值 - 4。

3. 求函數 y = x3 - x2 - x + 5的最值。

解: y = (x2 - x + 1/4)2 + (5 - 1/4)

當 x = 1/2時,函數取最小值 - 3/8。

4. 求函數 y = (x + a)2 + b的最值。

解:當 a > 0時,當 x = - a時,函數取最小值 b;

當 a < 0時,當 x = a時,函數取最小值 b。

5. 求函數 y = x2 - 6x + 9的最值。

解:配方得 y = (x - 3)2,當 x = 3時,函數取最小值 0。

6. 求函數 y = x3 + x2 - x的最值。

解:配方得 y = (x + 1/2)3 - 1/4,當 x = - 1時,函數取最小值 - 4。

7. 求函數 y = x? + x3 - x2的最大值。

解:配方得 y = (x2 + x + 1/4)(x2 - x + 1),當 x = - √3/3時,函數取最大值 (7 + √3)/6。

8. 求函數 y = (x2 + a2)2 - b(x2 + a2)的最小值。

解:配方得 y = (x2 + a2 + b)2 - a2b2,當 x = - a時,函數取最小值 a2b2。

9. 求函數 y = (x2 + k)2 + (k-2)x的最小值。

解:配方得 y = (x + k)2(k-2),當 x = - k時,函數取最小值 k2-2k。

10. 求函數 y = x3 + ax2 + bx + c的最值。

解:配方得 y = (x+a/6)3+b/24,當 x=-a/6時,函數取最大值(4ac-b2)/24a;當 x=-a/6時,函數取最小值(4ac-a3)/24。

11. 求函數 y = x?+x3-ax2-ax+a的最小值。

解:配方得y=(x+a/3)?-a(x+a/3)+a3/27,當x=-a/3時,函數取最小值-a3/27。

12. 求函數y=x^3+9x^2-6x+6的最小值。

解:配方得y=(x+3)^3+3,當x=-3時,函數取最小值3。

13. 求函數y=x^4-4x^3+6x^2的最大值。

解:配方得y=(x^2-2)^4+O(max)=((((((((((((((((((((((((((({-2}))))))))))))))))))),當x=0時,函數取最大值O(max)。

14. 求函數y=x^3-3x^2+mx的最大值。

解:配方得y=(x-√m)^3+m-m^3/3,當m>0時,當x=√m時,函數取最大值為m-m^3/3;當m<0時,當x=-√m時,函數取最大值為m-m^3/3。

15. 求函數y=x^4+ax^3+bx的最大值和最小值。

解:配方得y=(x^2+ax+b/2)^2+c(其中c為常數),所以最大值為c+b^2/4;


    >

例1:求$y = x^{2} - 4x + 3$的最值。

解:$y = (x - 2)^{2} - 1 \geq - 1$,即當$x = 2$時,$y$有最小值$- 1$。

注意事項:

1. 對二次項進行移項時,要連同符號一起移。

2. 在二次項前面加上一次項系數倒數的絕對值,是為了使二次項系數變為$1$,從而使二次配方得以進行。

3. 對配方后的式子進行變形時,不要改變其符號。

例2:求$y = x^{2} + 8x + 18$的最小值。

解:$y = x^{2} + 8x + 16 + 2$,配方得$y = (x + 4)^{2} + 2 \geq 2$,即當$x = - 4$時,$y$有最小值$2$。

注意事項:

1. 當已知條件中沒有具體的函數關系式時,要會根據條件列出函數關系式。

2. 在配方時,不要把常數項移項到等號的一邊后再進行配方,而應把常數項移項后對整個多項式進行配方。

1. 在配方時要注意二次項的系數是否為1,如果不是1要進行變換;在進行變形時要保證等號兩邊同趨向時符號相同。

2. 在配方時要注意不要漏項或漏底數;配方后要把各項化為完全平方式與非完全平方式的形式。

3. 在求最值時要注意考慮自變量的取值范圍。

4. 在配方后進行變形時要注意變形不能改變符號。

5. 在利用配方法解含絕對值符號的一元二次函數時,去絕對值符號時要考慮兩種情況。

6. 在利用配方法求解時,一定要掌握配方法的基本步驟,并注意觀察二次項系數與一次項系數之間的關系。

7. 在利用配方法解函數時,要注意等根問題,即求得的根要使二次項系數不為零。

希望以上信息對您有所幫助,如果您還有其他問題,歡迎告訴我。


以上是小編為您整理的配方法求最值例題20道 是否適合釣魚 適合冬天釣魚的地方,更多配方法求最值例題20道分享怎么釣魚和釣魚技巧相關內容請關注釣魚人的網站http://www.dmg-elevators.com/

Tags:配方法求最值例題20道

欄目排行
欄目推薦
熱門tag
鯽魚 餌料 海釣 鱸魚 路亞 野釣 餌料配方 競技 北京 窩料 海竿 手竿 夜釣 比賽 船釣 冰釣 爆炸鉤 遛魚 翹嘴 拋竿 泄力器
最新評論
一二三四高清免费播放视频